10,626 research outputs found

    Renormalization group improvement of the spectrum of Hydrogen-like atoms with massless fermions

    Get PDF
    We obtain the next-to-next-to-leading-log renormalization group improvement of the spectrum of Hydrogen-like atoms with massless fermions by using potential NRQED. These results can also be applied to the computation of the muonic Hydrogen spectrum where we are able to reproduce some known double logs at O(m\alpha^6). We compare with other formalisms dealing with log resummation available in the literature.Comment: 9 pages, LaTeX. Minor changes, note added, final versio

    Modeling of the Sub-Tg Relaxation Spectrum of Pd42.5Ni7.5Cu30P20 Metallic Glass

    Get PDF
    In this work we study the mechanical relaxation spectrum of Pd42.5Ni7.5Cu30P20 metallic glass. The effect of aging on the relaxation behavior is analyzed by measuring the internal friction during consecutive heating runs. The mechanical relaxation of the wellannealed glass state is modeled by fitting susceptibility functions to the primary and secondary relaxations of the system. The model is able to reproduce the mechanical relaxation spectrum below the glass transition temperature (sub-Tg) in the frequency- temperature ranges relevant for the high temperature physical properties and forming ability of metallic glasses. The model reveals a relaxation spectrum composed by the overlapping of primary and secondary processes covering a wide domain of times but with a relatively narrow range of activation energies.Postprint (author's final draft

    Renormalization group improvement of the NRQCD Lagrangian and heavy quarkonium spectrum

    Get PDF
    We complete the leading-log renormalization group scaling of the NRQCD Lagrangian at O(1/m2)O(1/m^2). The next-to-next-to-leading-log renormalization group scaling of the potential NRQCD Lagrangian (as far as the singlet is concerned) is also obtained in the situation mαs≫ΛQCDm\alpha_s \gg \Lambda_{QCD}. As a by-product, we obtain the heavy quarkonium spectrum with the same accuracy in the situation m\alpha_s^2 \simg \Lambda_{QCD}. When ΛQCDâ‰Șmαs2\Lambda_{QCD} \ll m\alpha_s^2, this is equivalent to obtain the whole set of O(mαs(n+4)ln⁥nαs)O(m\alpha_s^{(n+4)} \ln^n \alpha_s) terms in the heavy quarkonium spectrum. The implications of our results in the non-perturbative situation mαs∌ΛQCDm\alpha_s \sim \Lambda_{QCD} are also mentioned.Comment: 16 pages, LaTeX. Minor changes. Final versio

    Surprising relations between parametric level correlations and fidelity decay

    Get PDF
    Unexpected relations between fidelity decay and cross form--factor, i.e., parametric level correlations in the time domain are found both by a heuristic argument and by comparing exact results, using supersymmetry techniques, in the framework of random matrix theory. A power law decay near Heisenberg time, as a function of the relevant parameter, is shown to be at the root of revivals recently discovered for fidelity decay. For cross form--factors the revivals are illustrated by a numerical study of a multiply kicked Ising spin chain.Comment: 4 pages 3 figure
    • 

    corecore